The Glucosylation of Several Alcohols with Tetra-O-benzyl-a-D-glucopyranose and a Mixture of p-Nitrobenzenesulfonyl Chloride, Silver Trifluoromethanesulfonate, and Triethylamine

NOTES

Shinkiti Koto,* Tadaaki Sato, Naohiko Morishima, and Shonosuke Zen School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108 (Received September 20, 1978)

Synopsis. A novel glucosylation of several alcohols using 2,3,4,6-tetra-O-benzyl- α -p-glucopyranose and a ternary mixture of p-nitrobenzenesulfonyl chloride, silver trifluoromethanesulfonate, and triethylamine is presented.

The development of methods for the glycosylation is important in carbohydrate chemistry. PRecently, several syntheses of glucosides using 2,3,4,6-tetra-O-benzyl- α -D-glucopyranose (1) have been reported. We ourselves have briefly communicated a two-stage glucosylation using a novel procedure for generating the reactive sulfonate from 1 and a ternary mixture of p-nitrobenzenesulfonyl chloride (NsCl), silver trifluoromethanesulfonate (AgOTf), and triethylamine (Et₃N). This report will present a further finding that the one-stage treatment of an equimolar mixture of 1 and an alcohol with the ternary mixture in dichloromethane afforded the corresponding glucosides containing the β -anomer predominantly, as is shown in Table 1. This

Table 1. Glucosylation of alcohols with tetra-O-Benzyl-α-D-glucopyranose (1) and a mixture of p-nitrobenzenesulfonyl chloride, silver trifluoromethanesulfonate, and triethylamine

Run	R ^{b)}	Method ^{c)}	7	_	Recov./	
			Glucosides (α/β)	(Net Yield) ^{d)}	7a+7b	% 1
1	Me	/2/	76 (16/60)	(83)	16	8
2	Me	/1/	68 (11/57)	(96)	0	29
3	Cm	/2/	67 (18/49)	(72)	23	7
4	Cm	/1/	75 (15/60)	(96)	0	22
5	\mathbf{Ch}	/2/	64 (17/47)	(78)	21	18
6	\mathbf{Ch}	/1/	69 (19/50)	(84)	12	18
7	Ct	/1/	56 (16/40)	(72)	17	22e)
8	Dh	/1/	76 (13/60)	(93)	0	18 ^{f)}

a) Yields are based on the weight of products separated chromatographically, referring to that of $\mathbf{1}$ charged. b) Ch=cyclohexyl, Cm=cyclohexylmethyl, Ct=5 α -cholestan-3 β -yl, Dh=6-(2,4-dinitroanilino)hexyl, Me=methyl. c) /1/=one-stage treatment, /2/=two-stage treatment. d) Yields based on the $\mathbf{1}$ used. e) The recovery of the alcohol was 37%. f) The recovery of the alcohol was 23%.

constitutes a convenient method for the preparation of β -glucoside from 1. The self-condensation of 1, yielding octa-O-benzyl- α,α - and α,β -trehalose (7a and 7b),⁵⁾ was prevented in the one-stage glucosylation of alcohols with a primary hydroxyl group. Silver chloride and p-nitrobenzenesulfonic acid were deposited in the course of the reaction. Thus, the overall reaction is written by Eq. 1, where G denotes the tetra-O-benzyl-D-glucopyranosyl moiety:

	R1	R ²	OBD
1 2a 2b 3a 3b	H H OMe H OCm	OH OMe H OCm H	BnO BnO R ²
4a 4b 5a 5b 6a 6b 7a 7b	H OCh H OCt H ODh H O\alphaG	OCh H OCt H ODh H OαG	Bn=benzyl Ch=cyclohexyl Cm=cyclohexylmethyl Ct= 5α -cholestan- 3β -yl Dh= 6 -(2,4-dinitroanilino)hexyl Me=methyl $\alpha G=2,3,4,6$ -tetra- O -benzyl- α -D- glucopyranosyl

$$\alpha$$
GOH + ROH + NsCl + AgOTf + Et₃N \longrightarrow
 α, β GOR + AgCl + NsOH + Et₃N · TfOH. (1)

It should be noted that the self-condensations of 1 were unavoidable in the one-stage glucosylation of alcohols with a secondary hydroxyl group. The ternary mixture cannot be stored even at 0 °C, since an appreciable amount of bis(p-nitrophenyl) sulfoxide is formed.⁶⁾

Experimental

The instruments used are identical with those General. mentioned in the foregoing papers,5,7) except for the JEOL JDX-7F X-ray powder diffractometer (Cu $K\alpha$ ray, $\lambda = 153.2$ pm, Ni filter). The dichloromethane (Wako), cyclohexylmethanol (Tokyo Kasei), cyclohexanol (Koso), and triethylamine (Wako) were distilled and stored over molecular sieves (Linde 3A) before use. Compound 1,7) p-nitrobenzenesulfonyl chloride (Tokyo Kasei), 5α-cholestan-3α-ol (Tokyo Kasei), and 6-(2,4-dinitroanilino)-1-hexanol (mp 76-77 °C, Found: C, 50.55, H, 6.05, N, 15.03%. Calcd for $C_{12}H_{17}N_3O_5$: C, 50.88, H, 6.05; N, 14.83%), prepared by the treatment of 6-amino-hexanol (Aldrich) with 2,4-dinitrofluorobenzene (Wako) and NaHCO3 in aq ethanol, as well as silver trifluoromethanesulfonate, made by the neutralization of Ag₂CO₃ (Wako) with aq trifluoromethanesulfonic acid (Kanto Denka Kogyo), were stored in vacuo over P2O5.

General Procedure for One-stage Glucosylation. To a mixture of 1 (180 mg, 0.33 mmol), alcohol (0.33 mmol), p-nitrobenzenesulfonyl chloride (74 mg, 0.33 mmol), and silver trifluoromethanesulfonate (86 mg, 0.33 mmol) in dichloromethane (1.8 ml), we added triethylamine (47 μ l, 0.33 mmol) at $-40~^{\circ}\mathrm{C}$ (bath temperature) and the resulting mixture was stirred well. The bath temperature gradually rose at the rate of 1.0 °C/min to 0 °C, at which temperature the mixture was then stirred for 3 h. After the addition of powdered NaHCO₃ (ca. 0.1 g) and stirring at room temperature, the mixture was filtered, evaporated, and chromatographed on silica gel (Kanto Kagaku), using three kinds of solvent systems: benzene and butanone (Solvent A), hexane and ethyl acetate (Solvent B), and chloroform and ethyl acetate (Solvent C),

TABLE 2. PHYSICAL DATA OF GLUCOSIDES

	Solvents for Chromatog. ^{a)}		Mp/°C (Recryst. from) ^{b)}	[α] _D ²⁰ (c, CHCl ₃)	Found (%)		Calcd for: (%)				
					\mathbf{C}	H	N		\mathbf{C}	H	N
2a ^{c)} 2b ^{d)}	Solv. A	s f	 7475 (HX)	+28° (1.0) +11° (5.6)	75.73; 75.85;			$C_{35}H_{38}O_{6}$	75.79;	6.90	
3a 3 b	Solv. B	s f		$+33^{\circ} (1.0) +4^{\circ} (1.6)$	76.73; 77.52;			$\mathrm{C_{41}H_{48}O_6}$	77.36;	7.55	
4a 4b	Solv. B	s f	— 105—106 (IP)	$^{+45}^{\circ}$ (1.3) $^{+8}^{\circ}$ (1.6)	77.26; 77.40;			$\mathrm{C_{40}H_{46}O_6}$	77.14;	7.45	
5a 5b	Solv. B	s f	123—125 (IP) 120—123 (IP)	$+67^{\circ} (0.5) +20^{\circ} (1.0)$	80.44; 79.89;			${\rm C_{61}H_{82}O_6}$	80.40;	9.01	
6a 6b	Solv. C	f s	_	$+25^{\circ} (1.0) +9^{\circ} (1.0)$	68.32; 68.43;			$\mathrm{C_{46}H_{51}N_{3}O_{10}}$	68.55;	6.38;	5.21

a) For the solvent systems, see **Experimental**. f=faster-moving, s=slower-moving. b) HX=hexane, IP= isopropyl ether. c) O. T. Schmidt, T. Auer, and H. Schmadel, *Chem. Ber.*, **93**, 556 (1960), $[\alpha]_D^{20} + 32.2^{\circ}$ (c 5, CHCl₃). d) P. W. Austin, F. E. Hardy, J. G. Buchanan, and J. Baddiley, *J. Chem. Soc.*, **1964**, 2128, mp 68—69 °C, $[\alpha]_D^{20} + 11^{\circ}$ (c 5.3, dioxane).

respectively; these solvents were also used for TLC on silica gel (Merck, 7731).

General Procedure for Two-stage Glucosylation.^{4,8)} To an equimolar mixture of **1** (180 mg, 0.33 mmol), p-nitrobenzenesulfonyl chloride (74 mg), and silver trifluoromethanesulfonate (86 mg) in dichloromethane (1.8 ml), we added triethylamine (47 μ l, 0.33 mmol) at -40 °C. After the bath temperature was risen to -10 °C, the mixture was stirred for 30 min. An alcohol (0.33 mmol) was then added, and agitation was continued at 0 °C for 3 h. Work-up was done as has been described above.

Self-condensation of 1 with the Ternary Mixture. To a mixture of 1 (90 mg, 0.17 mmol), p-nitrobenzenesulfonyl chloride (37 mg), and silver trifluoromethanesulfonate (43 mg) in dichloromethane (0.9 ml), we added triethylamine (24 μ l) at -40 °C. The bath temperature rose to room temperature at the rate of 1.0 °C/min. The processed reaction mixture was chromatographed using Solvent A (gradient, 100: 1—20: 1) to give 7a (17.5 mg, 20%) and then 7b (36.6 mg, 42%). Compounds 7a and 7b were identified with those prepared before. 7)

Alternative Synthesis of 5a. Ethyl 2.3,4,6-tetra-O-benzyl-1-thio- α -D-glucopyranoside⁹) (40 mg, 0.83 mmol) in dichloromethane (0.5 ml) was treated with Br₂ in dichloromethane (0.62 g/ml, 22 μ l) at room temperature for 10 min. After evaporation to dryness, the syrup thus obtained was reacted with 5α -cholestan- 3β -ol (32 mg, 0.083 mmol), tetrabutylammonium bromide¹⁰) (27 mg, 0.083 mmol), and 2,6-lutidine (10 μ l, 0.083 mmol) in dichloromethane (0.5 ml) overnight. Chromatography using Solvent A (40: 1), followed by recrystallization from hexane, afforded 5a (59 mg, 78%) (Found: C, 79.39; H, 8.83%).

Alternative Synthesis of 5b. A mixture of 3β-(2,3,4,6-tetra-O-acetyl-β-p-glucopyranosyloxy)-5α-cholestan¹¹⁾ (0.14 g, 0.2 mmol), KOH (0.35 g), and benzyl chloride (1.4 ml) was heated at 100 °C for 16 h. After processing, chromatography sing Solvent A (40: 1) and recrystallization from hexane gave 5b (0.08 g, 73%) (Found: C, 79.44; H, 8.70%). Isolation of p-Nitrobenzenesulfonic Acid and Silver Chloride.

The reaction mixture of glucosylation carried out on a 0.33-mmol scale using cyclohexylmethanol was filtered to give a solid. Subsequent washings of solid with methanol on evaporation afforded hydroscopic crystals of p-nitrobenzenesulfonic acid (42 mg, 62%), identified with the authentic sample by determining their IR (KBr) spectra. A washed solid (\approx 40 mg, >80%) on the filter was identified with AgCl by determining its X-ray powder diffraction.

Examination of the Stability of the Ternary Mixture. To a mixture of p-nitrobenzenesulfonyl chloride (73.8 mg, 0.33 mmol) and silver trifluoromethanesulfonate (85.7 mg, 0.33 mmol) in dichloromethane (1.8 ml), we added triethylamine (47 μ l, 0.33 mmol) at $-40\,^{\circ}\text{C}$; the bath temperature was programmed as it was in the one-stage treatment. The mixture was then directly poured onto a column of silica gel, which was subsequently chromatographed with benzene. Bis(p-nitrophenyl)sulfoxide (8.2 mg, 17%) (mp 181.5 °C, UV_{max} (95% C_2H_5OH) 268 nm (ε 1.8×10⁴) [lit,¹²⁾ mp 178— 180 °C, UV_{max} (95% (C₂H₅OH) 268 nm (ε 1.82×10⁴)], Found: C, 49.33, H, 2.66; N, 9.71. M^+ —16. 276, 13) Calcd for $C_{12}H_8N_2O_5S$: C, 49.32; H, 2.76; N, 9.58%, MW 292. 27) and the slower-moving p-nitrobenzenesulfonyl chloride (55.7 mg, 75%), identified with an authentic sample by determining the mp, IR (KBr), and MS (M+ 221, M++2. 223), were thus obtained.

We wish to thank the Kanto Denka Kogyo Co. for their gift of trifluoromethanesulfonic acid and Mr. Yoshio Hamada for his technical assistance.

References

- 1) K. Igarashi, Adv. Carbohydr. Chem. Biochem., 34, 243 (1977).
- 2) J. Leroux and A. S. Perlin, *Carbohydr. Res.*, **47**, C8 (1976), **67**, 163 (1978); W. A. Szarek, H. C. Jarrell, and J. K. N. Jones, *ibid.*, **57**, C13 (1977); H. Tsutsumi, Y. Kawai, and Y. Ishido, *Chem. Lett.*, **1978**, 629.
- 3) F. J. Kronzer and C. Schuerch, Carbohydr. Res., 27, 379 (1973); R. Eby and C. Schuerch, ibid., 34, 79 (1974).
 - 4) S. Koto, Y. Hamada, and S. Zen, Chem. Lett., 1975, 587.
- 5) S. Koto, N. Morishima, and S. Zen, *Bull. Chem. Soc. Jpn.*, **52**, 784 (1979).
 - 6) Studies of the formation of sulfoxide are in progress.
- 7) S. Koto, N. Morishima, Y. Miyata, and S. Zen, *Bull. Chem. Soc. Jpn.*, **49**, 2639 (1976).
- 8) In the early phase of the study (Ref. 4), 1,2-dichloroethane was used. Later, less freezing dichloromethane was used.
 - 9) F. Weygand and H. Ziemann, Ann., 657, 179 (1962).
- 10) R. U. Lemieux, K. B. Hendriks, R. V. Stick, and K. James, *J. Am. Chem. Soc.*, **97**, 4056 (1975).
- 11) R. P. Linstead, J. Am. Chem. Soc., **62**, 1766 (1940).
- 12) H. H. Szmant and J. O. McIntosh, J. Am. Chem. Soc., **73**, 4246 (1951).
- 13) This peak was not detected in the MS of the NsCl used.